Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Adapting text categorization for manifest based android malware detection

Tytuł:
Adapting text categorization for manifest based android malware detection
Autorzy:
Coban, Onder
Ozel, Selma Ayse
Data publikacji:
2019
Słowa kluczowe:
Android
malware detection
text categorization
machine learning
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Malware is a shorthand of malicious software that are created with the intent of damaging hardware systems, stealing data, and causing a mess to make money, protest something, or even make war between governments. Malware is often spread by downloading some applications for your hardware from some download platforms. It is highly probable to face with a malware while you try to load some applications for your smart phones nowadays. Therefore it is very important that some tools are needed to detect malware before loading them to the hardware systems. There are mainly three different approaches to detect malware: i) static, ii) dynamic, and iii) hybrid. Static approach analyzes the suspicious program without executing it. Dynamic approach, on the other hand, executes the program in a controlled environment and obtains information from operating system during runtime. Hybrid approach, as its name implies, is the combination of these two approaches. Although static approach may seem to have some disadvantages, it is highly preferred because of its lower cost. In this paper, our aim is to develop a static malware detection system by using text categorization techniques. To reach our goal, we apply text mining techniques like feature extraction by using bag-of-words, n-grams, etc. from manifest content of suspicious programs, then apply text classification methods to detect malware. Our experimental results revealed that our approach is capable of detecting malicious applications with an accuracy between 94.0% and 99.3%.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies