Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Nonhomogeneous nonlinear oscillator with damping: asymptotic analysis in continuous and discrete time

Tytuł:
Nonhomogeneous nonlinear oscillator with damping: asymptotic analysis in continuous and discrete time
Autorzy:
Rouhani, Behzad Djafari
Piranfar, Mohsen Rahimi
Data publikacji:
2019
Słowa kluczowe:
nonlinear oscillator with damping
inexact inertial proximal method
asymptotic behavior
maximal monotone operator
asymptotic center
oscylator nieliniowy
zachowanie asymptotyczne
operator monotoniczny
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We consider the following second order evolution equation modelling a nonlinear oscillator with damping ü(t) +𝛾 ů(t) + Au(t) = f(t), where A is a maximal monotone andα-inverse strongly monotone operator in a real Hilbert space H. With suitable assumptions on 𝛾 and f(t) we show that A-1(0) ≠ ∅, if and only if (SEE) has a bounded solution and in this case we provide approximation results for elements of A-1(0) by proving weak and strong convergence theorems for solutions to (SEE) showing that the limit belongs to A-1(0). As a discrete version of (SEE), we consider the following second order difference equation un+1-un-αn(un-un-1)+λnAun+1 ∋ f(t), where A is assumed to be only maximal monotone (possibly multivalued). By using the results in [Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411-417], we prove ergodic, weak and strong convergence theorems for the sequence un, and show that the limit is the asymptotic center of un and belongs to A−1(0). This again shows that A−1(0) ≠ ∅ if and only if un is bounded. Also these results solve an open problem raised in [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3-11], namely the study of the convergence results for the inexact inertial proximal algorithm. Our paper is motivated by the previous results in [Djafari Rouhani B., Asymptotic behaviour of quasi-autonomous dissipative systems in Hilbert spaces, J. Math. Anal. Appl., 1990, 147, 465-476; Djafari Rouhani B., Asymptotic behaviour of almost nonexpansive sequences in a Hilbert space, J. Math. Anal. Appl., 1990, 151, 226–235; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to some second order evolution systems, Rocky Mountain J. Math., 2010, 40, 1289-1311; Djafari Rouhani B., Khatibzadeh H., A strong convergence theorem for solutions to a nonhomogeneous second order evolution equation, J. Math. Anal. Appl., 2010, 363, 648-654; Djafari Rouhani B., Khatibzadeh H., Asymptotic behavior of bounded solutions to a class of second order nonhomogeneous evolution equations, Nonlinear Anal., 2009, 70, 4369-4376; Djafari Rouhani B., Khatibzadeh H., On the proximal point algorithm, J. Optim. Theory Appl., 2008, 137, 411-417] and significantly improves upon the results of [Attouch H., Maingé P. E., Asymptotic behavior of second-order dissipative evolution equations combining potential with non-potential effects, ESAIM Control Optim. Calc. Var., 2011, 17(3), 836-857], and [Alvarez F., Attouch H., An inertial proximal method for maximal monotone operators via dicretization of a nonlinear oscillator with damping, Set Valued Anal., 2001, 9, 3-11].
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies