Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modeling and forecasting relative humidity using multilayer perceptron, radial basis function, and linear regression approaches

Tytuł:
Modeling and forecasting relative humidity using multilayer perceptron, radial basis function, and linear regression approaches
Autorzy:
Kadiri, Imad
Yahia, Abdellah Ben
Abdallaoui, Abdelaziz
El Hmaidi, Abdellah
Data publikacji:
2025
Słowa kluczowe:
modeling
MLP
multilayer perceptron
RBF
radial basis function
MLR
multiple linear regression
climate change
correlation coefficient
mean square error
relative humidity
Fez
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Forecasting relative humidity is a critical for addressing the challenges of climate change. It facilitates comprehension of climatic mechanisms and the anticipation of extreme weather events, while also contributing to strengthening societal resilience and protection. Indeed, elevated levels of humidity have been demonstrated to exacerbate heat waves, leading to a marked increase in both the perceived temperature and the associated health risks. Conversely, low humidity promotes conditions conducive to droughts and wildfires. Moreover, relative humidity plays a key role in the water cycle, influencing precipitation, evaporation, and cloud formation. Understanding these mechanisms is essential for anticipating floods, droughts, and water shortages. In this study, mathematical models were developed to predict relative humidity in the Fez, Morocco, using multilayer perceptron (MLP) neural networks, radial basis function (RBF) neural networks, and multiple linear regression (MLR). The dataset used in this study includes daily values of eight meteorological parameters, including temperature at 2m, shortwave Radiation, diffuse shortwave radiation, precipitation total, evapotranspiration, vapor pressure deficit and wind speed and relative humidity as the output. The data spans 38 years, from January 1985 to December 2022, and includes 13879 observation days.. To evaluate the predictive performance of these models, we analyzed their architectures, learning algorithms, correlation coefficients, and mean squared errors. The results indicate that the MLP model attains the highest predictive accuracy, with a correlation coefficient of 0.9809 and a mean squared error MSE of 0.0099, outperforming the RBF model (correlation of 0.9603) and the MLR model (correlation of 0.9023), the best performing model used a Tansig activation function in the hidden layer, a Purelin function in the output layer and the Levenberg-Marquardt learning algorithm with a MLP configuration [7-15-1]. The findings of this study offer a valuable contribution to the field of water resource management in the region. They demonstrate the efficacy of artificial neural network models in enhancing moisture forecasting, thereby providing a solid foundation for future research in climate modelling.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies