Tytuł pozycji:
The effect of cast Al-Si-Cu alloy solidification rate on alloy thermal characteristics
Purpose: In the metal casting industry, an improvement of component quality depends mainly on better control over the production parameters. Thus, a thermal analysis cooling curve of the alloy is used for process control in the aluminum casting industry. In this work effect of cooling rate on the size of the grains, SDAS, size of the β precipitation and thermal characteristic results of AC AlSi9Cu cast alloy have been described. The solidification process was studied using the cooling curve and crystallization curve at solidification rate ranging from 0,16 ºCs-1 up to 1,04 ºCs-1 Design/methodology/approach: The experimental alloy used in this investigation was prepared by mixing the ACAlSi5Cu commercial alloys and two master alloys AlSi49 and AlCu55. Thermal analysis tests were conducted using the UMSA Technology Platform. Cooling curve thermal analysis was performed on all samples using high sensitivity thermocouples of K type. Data were acquired by a high speed data acquisition system linked to a PC computer. Each chilled sample was sectioned horizontally where the tip of the thermocouple was located and it was prepared by standard grinding and polishing procedures. Optical microscopy was used to characterize the microstructure and intermetallic phases. Secondary Dendrite Arm Spacing measurements were carried out using an Leica Q-WinTM image analyzer. Findings: Increasing the cooling rate increases significantly the liquidus temperature, nucleation undercooling temperature, solidification range and decreases the recalescence undercooling temperature. Increasing cooling rate refines all microstructural features. Research limitations/implications: This paper presents results for one alloy - AC AlSi9Cu only, for the assessment of the Silicon Modification Level didn’t include the arrangement of a Si crystal in a matrix. Originality/value: Original value of the work is applied the artificial intelligence for the assessment of the Silicon Modification Level.