Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A deep learning based approach for classification of abdominal organs using ultrasound images

Tytuł:
A deep learning based approach for classification of abdominal organs using ultrasound images
Autorzy:
Santhosh Reddy, D.
Rajalakshmi, P.
Mateen, M. A.
Data publikacji:
2021
Słowa kluczowe:
abdominal organ classification
deep learning
medical imaging
transfer learning
ultrasound image
telehealth
uczenie głębokie
obrazowanie medyczne
transfer wiedzy
obraz ultrasonograficzny
telezdrowie
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Ultrasound imaging is one of the primary modalities used for diagnosing a multitude of medical conditions affecting organs and soft tissues the body. Unlike X-rays, which use ionizing radiation, ultrasound imaging utilizes non-hazardous acoustic waves and is widely preferred by doctors. However, ultrasound imaging sometimes requires substantial manual effort in the identification of organs during real-time scanning. Also, it is a challenging task if the scanning performed by an unskilled clinician does not comprise adequate information about the organ, leading to an incorrect diagnosis and thereby fatal consequences. Hence, the automated organ classification in such scenarios can offer potential benefits. In this paper, We propose a convolutional neural network-based architecture (CNNs), precisely, a transfer learning approach using ResNet, VGG, GoogleNet, and Inception models for accurate classification of abdominal organs namely kidney, liver, pancreas, spleen, and urinary bladder. The performance of the proposed framework is analyzed using in-house developed dataset comprising of 1906 ultrasound images. Performance analysis shows that the proposed framework achieves a classification accuracy and F1 score of 98.77% and 98.55%, respectively, on an average. Also, we provide the performance of the proposed architecture in comparison with the state-of-the-art studies.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies