Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

The application of volume texture extraction to three-dimensional seismic data – lithofacial structures exploration within the Miocene deposits of the Carpathian Foredeep

Tytuł:
The application of volume texture extraction to three-dimensional seismic data – lithofacial structures exploration within the Miocene deposits of the Carpathian Foredeep
Autorzy:
Łukaszewski, Mariusz
Data publikacji:
2020
Słowa kluczowe:
Carpathian Foredeep
channel system
seismic attributes
machine learning
Grey Level Co-occurrence Matrix
zapadlisko przedkarpackie
system kanałów
atrybuty sejsmiczne
uczenie maszynowe
GLCM
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
There are numerous conventional fields of natural gas in the Carpathian Foredeep, and there is also evidence to suggest that unconventional gas accumulations may occur in this region. The different seismic signatures of these geological forms, the small scale of amplitude variation, and the large amount of data make the process of geological interpretation extremely time consuming. Moreover, the dispersed nature of information in a large block of seismic data increasingly requires automatic, self-learning cognitive processes. Recent developments with Machine Learning have added new capabilities to seismic interpretation, especially to multi-attribute seismic analysis. Each case requires a proper selection of attributes. In this paper, the Grey Level Co-occurrence Matrix method is presented and its two texture attributes: Energy and Entropy. Haralick’s two texture parameters were applied to an advanced interpretation of the interval of Miocene deposits in order to discover the subtle geological features hidden between the seismic traces. As a result, a submarine-slope channel system was delineated leading to the discovery of unknown earlier relationships between gas boreholes and the geological environment. The Miocene deposits filling the Carpathian Foredeep, due to their lithological and facies diversity, provide excellent conditions for testing and implementing Machine Learning techniques. The presented texture attributes are the desired input components for self-learning systems for seismic facies classification.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies