Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Bisimulation-Based Concept Learning in Description Logics

Tytuł:
Bisimulation-Based Concept Learning in Description Logics
Autorzy:
Tran, T.-L.
Ha, Q.-T.
Hoang, T.-L.-G.
Nguyen, L. A.
Nguyen, H. S.
Data publikacji:
2014
Słowa kluczowe:
bisimulation
concept learning
description logics
machine learning
binary system
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Concept learning in description logics (DLs) is similar to binary classification in traditional machine learning. The difference is that in DLs objects are described not only by attributes but also by binary relationships between objects. In this paper, we develop the first bisimulation-based method of concept learning in DLs for the following setting: given a knowledge base KB in a DL, a set of objects standing for positive examples and a set of objects standing for negative examples, learn a concept C in that DL such that the positive examples are instances of C w.r.t. KB, while the negative examples are not instances of C w.r.t. KB. We also prove soundness of our method and investigate its C-learnability.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies