Tytuł pozycji:
Badanie rozpływu prądu udarowego w urządzeniu piorunochronnym i instalacji elektrycznej budynku
W artykule przedstawiono wyniki badań poligonowych oraz symulacyjnych, rozpływu prądu udarowego w urządzeniu piorunochronnym, kablowej linii zasilającej i instalacji elektrycznej budynku jednorodzinnego z przyłączonymi urządzeniami AGD i RTV. Badania przeprowadzono w 2013 roku na poligonie badawczym Politechniki Rzeszowskiej w miejscowości Huta Poręby koło Dynowa. Udary prądowe wprowadzano z generatora do zwodu odgromowego na dachu budynku. Rozpływ prądu w poszczególnych elementach badanego obiektu mierzono i rejestrowano za pomocą wielotorowego elektrooptycznego układu pomiarowego. Dla weryfikacji wyników pomiarów, przeprowadzono badania symulacyjne rozpływu prądu udarowego w elementach obiektu zamodelowanego w programie ATP-EMTP. Parametry schematu zastępczego urządzenia piorunochronnego (LPS) w tym elementów uziemienia badanego obiektu w postaci uziomów pionowych i poziomych, wyznaczono na podstawie ich wymiarów geometrycznych oraz wartości rezystywności gruntu. Przeprowadzone badania wykazały istotny wpływ konfiguracji, wymiarów i impedancji elementów badanego obiektu na rozpływ prądu w układzie. Zauważono wpływ częstotliwościowych zależności parametrów układu na zmiany kształtów zmierzonych prądów. Wyniki symulacyjne wykazały dobrą zgodność z wynikami eksperymentalnymi. Niewielkie różnice wynikają z przyjętego w symulacjach dwu-wykładniczego przebiegu prądu, który nie odwzorowuje w pełni prądu generatora.
The paper presents results of the lightning protection system (LPS) tests for a small residential structure with the connected home appliances and electronics, conducted in 2013 at the new test site in Poland using the mobile surge current generator. Current surges were injected from generator to the air termination on the building roof. Current distribution in individual elements of test object was measured and registered with multi-channel electro-optical measurement system. The current waveshapes in the vertical ground electrodes differed from the injected current waveshapes and from the current waveshapes in other parts of the test system. Computer simulation using ATP-EMTP were carried out in order to verify the results of measurements. Vertical and horizontal ground electrodes were modeled for specified parameter resulting from the geometrical configuration of the system and the measured soil conductivity. Conducted investigations showed the significant influence of configuration, dimensions and impedance of test object on current distribution. A significant influence of frequency dependent components of the system impedances on current waveshapes has been noticed. Computed results show a good agreement with the experimental data. Small differences in the current waveshapes result mainly from the adopted double-exponential mathematical approximation which does not perfectly match the current injected from the generator.