Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Characterizing positioning errors when using the second-generation Australian satellite-based augmentation system

Tytuł:
Characterizing positioning errors when using the second-generation Australian satellite-based augmentation system
Autorzy:
Khaki, Mehdi
El-Mowafy, Ahmed
Data publikacji:
2020
Słowa kluczowe:
GNSS
SBAS
error characteristics
urban environment
kinematic positioning
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Fault detection and exclusion (FDE) is the main task for pre-processing of global navigation satellite system (GNSS) positions and is a fundamental process in integrity monitoring that is needed to achieve reliable positioning for applications such as in intelligent transport systems. A widely used method is the solution separation (SS) algorithm. The FDE in SS traditionally builds the models assuming positioning errors are normally distributed. However, in urban environments, this traditional assumption may no longer be valid. The objective of this study is to investigate this and further examine the performance of alternative distributions, which can be useful for FDE modelling and thus improved navigation. In particular, it investigates characterization of positioning errors using GNSS when the Australian satellite-based augmentation system (SBAS) test bed is used, which comprised different positioning modes, including single-point positioning (SPP) using the L1 global positioning system (GPS) legacy SBAS, the second-generation dual-frequency multi-constellation (DFMC) SBAS service for GPS and Galileo, and, finally, precise point positioning (PPP) using GPS and Galileo observations. Statistical analyses are carried out to study the position error distributions over different possible operational environments, including open sky, low-density urban environment, and high-density urban environment. Significant autocorrelation values are also found over all areas. This, however, is more evident for PPP solution. Furthermore, the applied distribution analyses applied suggest that in addition to the normal distribution, logistic, Weibull, and gamma distribution functions can fit the error data in various cases. This information can be used in building more representative FDE models according to the work environment.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies