Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Limit behavior of the invariant measure for Langevin~dynamics

Tytuł:
Limit behavior of the invariant measure for Langevin~dynamics
Autorzy:
Barrera, Gerardo
Data publikacji:
2022
Słowa kluczowe:
coupling
Gaussian distribution
invariant distribution
Langevin dynamics
Ornstein-Uhlenbeck process
perturbations of dynamical systems
Wasserstein distance
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We consider the Langevin dynamics on Rd with an overdamped vector field and driven by multiplicative Brownian noise of small amplitude √ϵ, ϵ>0. Under suitable assumptions on the vector field and the diffusion coefficient, it is well-known that it has a unique invariant probability measure μ ϵ . We prove that as ε tends to zero, the probability measure ϵd/2μ ϵ(√ϵdx) converges in the p--Wasserstein distance for p∈[1,2] to a Gaussian measure with zero-mean vector and non-degenerate covariance matrix which solves a Lyapunov matrix equation. Moreover, the error term is estimated. We emphasize that generically no explicit formula for μϵ can be found.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies