Tytuł pozycji:
Particle swarm optimization-based Fast Relevance Victor Machine for forecasting dissolved gases content in Power transformer oil
Forecasting of dissolved gases concentration in power transformer is very significant to detect incipient failures of transformer early and ensure hassle free operation of entire power system. A forecasting model based on Particle Swarm Optimization –Fast Relevance Vector Machine (PSO-FRVM) is proposed in this paper. PSO is utilized to optimize the free parameter of the Gaussian kernel function to improve the forecasting performance. The Matlab program testify the correctness and validity of the model.
W artykule przedstawiono metodę prognozowania rozpływu gazów w transformatorze elektrycznym, opartą na zbudowanym modelu. W tworzeniu modelu wykorzystano Optymalizację Stadną Cząsteczek z maszyną opartą na wektorach istotnych (ang. PSO-FRVM). Metoda PSO wykorzystana została do optymalizacji doboru parametru wolnego w funkcji jądra Gaussa dla polepszenia jakości prognozowania. Weryfikację przeprowadzono w programie Matlak.