Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evaluation Modeling of Electric Bus Interior Sound Quality Based on Two Improved XGBoost Algorithms Using GS and PSO

Tytuł:
Evaluation Modeling of Electric Bus Interior Sound Quality Based on Two Improved XGBoost Algorithms Using GS and PSO
Autorzy:
Zhang, Enlai
Cheng, Yi
Su, Liang
Zhonglian , Ruoyu
Chen, Xianyi
Jiang, Shangfeng
Data publikacji:
2024
Słowa kluczowe:
electric bus
sound quality
acoustic comfort
GS-XGBoost
PSO-XGBoost
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
There is no doubt that traffic noise has become one of the main sources of urban noise, and the electric bus, as an important means of transport frequently used by people in daily life, has a direct impact on the psychological and auditory health of passengers due to its interior noise characteristics. Consequently, studying electric bus sound quality is an important way to improve vehicle performance and comfort. In this paper, eight electric buses were selected and 64 noise samples were measured. Acoustic comfort was taken as an evaluation index, professionals were organized to complete the subjective evaluation tests for all noise samples based on rank score comparison (RSC). And nine psycho-acoustic objective parameters such as loudness, sharpness and roughness were calculated using Artemis software to establish the sound quality database of electric buses. Aiming at the practical application requirements of high-precision modeling of acoustic comfort in vehicles, this paper presented two improved extreme gradient boosting (XGBoost) algorithms based on grid search (GS) method and particle swarm optimization (PSO), respectively, with objective parameters and acoustic comfort as input and output variables, and established three regression models of standard XGBoost, GS-XGBoost, and PSO-XGBoost through data training. Finally, the calculation results of three indexes of average relative error, square root error and correlation coefficient indicate that the proposed PSO-XGBoost model is significantly better than GS-XGBoost and standard XGBoost, with its prediction accuracy as high as 97.6 %. This model is determined as the evaluation model of interior acoustic comfort for this case, providing a key technical support for future sound quality optimization of electric buses.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies