Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Learning from the COVID-19 Pandemic to Improve Critical Infrastructure Resilience using Temporal Fusion Transformers

Tytuł:
Learning from the COVID-19 Pandemic to Improve Critical Infrastructure Resilience using Temporal Fusion Transformers
Autorzy:
Jenko, Jakob
Costa, Joao Pita
Vladušič, Daniel
Bavčar, Urban
Čabarkapa, Radoš
Data publikacji:
2024
Słowa kluczowe:
demand prediction
Temporal Fusion Transformer
TFT
Covid-19 pandemic
consumption patterns
grid stability
przewidywanie popytu
pandemia Covid-19
stabilność sieci
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
During the COVID-19 pandemic, traditional demand prediction models drastically failed mostly due to altered consumption patterns. Accurate forecasts are essential for ensuring grid stability. This paper analyzes the performance of the Temporal Fusion Transformer (TFT) model during the COVID-19 pandemic aiming to build resilient demand prediction models. Through detailed analysis, we identify which features may contribute to improved performance during large-scale events such as pandemics. During lockdowns, consumption patterns change significantly, leading to substantial errors in existing demand prediction models. We explore the impact of features such as mobility and special day considerations (e.g., lockdown days) on enhancing model performance. We demonstrate that periodic updates on a monthly basis make the model more resilient to changes in consumption patterns during future pandemics. Moreover, we show how improvements in prediction accuracy translate to real-world benefits, such as enhanced grid stability and economic advantages, including reduced energy waste. Additionally, we discuss the implications for energy-critical infrastructure, considering disruptive scenarios like future pandemics.
1. This research has received funding from the European Union’s Horizon Europe research and innovation programme under the grant agreement No. 101073821 (SUNRISE) and 101070052 (TANGO).
2. Thematic Sessions: Regular Papers
3. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies