Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Trend and nonstationary relation of extreme rainfall: Central Anatolia, Turkey

Tytuł:
Trend and nonstationary relation of extreme rainfall: Central Anatolia, Turkey
Autorzy:
Oruc, Sertac
Data publikacji:
2021
Słowa kluczowe:
nonstationarity
Mann–Kendall test
Cox–Stuart test
Pettitt test
trend
generalized extreme value
niestacjonarność
test Manna-Kendalla
test Coxa-Stuarta
test Pettitta
tendencja
uogólniona wartość ekstremalna
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The frequency of extreme rainfall occurrence is expected to increase in the future and neglecting these changes will result in the underestimation of extreme events. Nonstationary extreme value modelling is one of the ways to incorporate changing conditions into analyses. Although the defnition of nonstationary is still debated, the existence of nonstationarity is determined by the presence of signifcant monotonic upward or downward trends and/or shifts in the mean or variance. On the other hand, trend tests may not be a sign of nonstationarity and a lack of signifcant trend cannot be accepted as time series being stationary. Thus, this study investigated the relation between trend and nonstationarity for 5, 10, 15, and 30 min and 1, 3, 6, and 24 h annual maximum rainfall series at 13 stations in Central Anatolia, Turkey. Trend tests such as Mann– Kendall (MK), Cox–Stuart (CS), and Pettitt’s (P) tests were applied and nonstationary generalized extreme value models were generated. MK test and CS test results showed that 33% and 27% of 104 time series indicate a signifcant trend (with p<0.01–p<0.05–p<0.1 signifcance level), respectively. Moreover, 43% of time series have outperformed nonstationary (NST) models that used time as covariate. Among fve diferent time-variant nonstationary models, the model with a location parameter as a linear function of time and the model with a location and scale parameter as a linear function of time performed better. Considering the rainfall series with a signifcant trend, increasing trend power may increase how well fitted nonstationary models are. However, it is not necessary to have a signifcant trend to obtain outperforming nonstationary models. This study supported that it is not necessarily time series to have a trend to perform better nonstationary models and acceptance of nonstationarity solely depending on the presence of trend may be misleading.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies