Tytuł pozycji:
Structure and magnetic properties of magnetostrictive Td0.3Dy0.7Fe1.9 / polyurethane composite materials
Purpose: The aim of this work is to obtain polyurethane matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9particles and to observe changes of magnetic properties and magnetostriction of samples with different particle size distributions of Tb0.3Dy0.7Fe1.9 powder. Design/methodology/approach: Polyurethane matrix composite materials reinforced by Tb0.3Dy0.7Fe1.9 magnetostrictive particles fabricating method were developed during the investigations, making possible to obtain materials with good physical properties. The influence of the concentration and powder particles size of the Td0.3Dy0.7Fe1.9 on magnetic and magnetostrictive properties were estimated. Metallographic examination of powders morphology and the structure observations of composite materials were made. Findings: Composite materials consisting of Td0.3Dy0.7Fe1.9 particles can extend the possibilities of application the magnetostrictive materials and reduce the cost of their manufacturing. The obtained materials show regular distribution of Td0.3Dy0.7Fe1.9 powder in polyurethane matrix. Research limitations/implications: The advantage of polyurethane matrix magnetostrictive composite materials are their simple technology and lowering manufacturing cost in comparison to monolithic Td0.3Dy0.7Fe1.9. These efforts can be considered as very up-to-date from the scientific point of view. Originality/value: The originality of this investigations is the statement that increasing the size of the Td0.3Dy0.7Fe1.9 particles cause increasing the strain response and this is due to the demagnetization effects.