Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

P300 based character recognition using sparse autoencoder with ensemble of SVMs

Tytuł:
P300 based character recognition using sparse autoencoder with ensemble of SVMs
Autorzy:
Kundu, Sourav
Ari, Samit
Data publikacji:
2019
Słowa kluczowe:
brain computer interface
deep learning
support vector machine
normalization
P300 speller
sparse autoencoder
interfejs mózg-komputer
uczenie głębokie
maszyna wektorów wsparcia
P300
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this study, a brain–computer interface (BCI) system known as P300 speller is used to spell the word or character without any muscle activity. For P300 signal classification, feature extraction is an important step. In this work, deep feature learning techniques based on sparse autoencoder (SAE) and stacked sparse autoencoder (SSAE) are proposed for feature extraction. Deep feature provides the abstract information about the signal. This work proposes fusion of deep features with the temporal features, which provides abstract and temporal information about the EEG signal. These deep feature and temporal feature are partially complement of each other to represent the EEG signal. For classification of the EEG signal, an ensemble of support vector machines (ESVM) is adopted as it helps to reduce the classifiers variability. In classifier ensemble system, the score of individual classifier is not at the same level. To transform these scores into a common level, min–max normalization is proposed prior to combining them. Min-max normalization scales the classifiers' score between 0 and 1. The experiments are conducted on three standard public datasets, dataset IIb of BCI Competition II, dataset II of the BCI Competition III and BNCI Horizon dataset. The experimental results show that the proposed method yields better or comparable performance compared to earlier reported techniques.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies