Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Evaluation of Open-Source Linear Algebra Libraries targeting ARM and RISC-V Architectures

Tytuł:
Evaluation of Open-Source Linear Algebra Libraries targeting ARM and RISC-V Architectures
Autorzy:
Fibich, Christian
Tauner, Stefan
Rössler, Peter
Horauer, Martin
Data publikacji:
2020
Słowa kluczowe:
embedded system
linear algebra
BLAS
benchmark
ARM
systemy wbudowane
program
algebra liniowa
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Basic Linear Algebra Subprograms (BLAS) has emerged as a de-facto standard interface for libraries providing linear algebra functionality. The advent of powerful devices for Internet of Things (IoT) nodes enables the reuse of existing BLAS implementations in these systems. This calls for a discerning evaluation of the properties of these libraries on embedded processors. This work benchmarks and discusses the performance and memory consumption of a wide range of unmodified open-source BLAS libraries. In comparison to related (but partly outdated) publications this evaluation covers the largest set of opensource BLAS libraries, considers memory consumption as well and distinctively focuses on Linux-capable embedded platforms (an ARM-based SoC that contains an SIMD accelerator and one of the first commercial embedded systems based on the emerging RISC-V architecture). Results show that especially for matrix operations and larger problem sizes, optimized BLAS implementations allow for significant performance gains when compared to pure C implementations. Furthermore, the ARM platform outperforms the RISC-V incarnation in our selection of tests.
1. Track 5: Software and System Engineering
2. Technical Session: Joint 40th IEEE Software Engineering Workshop and 7th International Workshop on Cyber-Physical Systems
3. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies