Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Comparison of Two Machine Learning Models for Predicting Volumetric Errors From On-The-Fly R-Test Type Device Data and Virtual End Point Constraints

Tytuł:
Comparison of Two Machine Learning Models for Predicting Volumetric Errors From On-The-Fly R-Test Type Device Data and Virtual End Point Constraints
Autorzy:
Zeng, Min
Mayer, J. R. R.
Feng, Miao
Bitar-Nehme, Elie
Duong, Xuan Truong
Data publikacji:
2025
Słowa kluczowe:
machine learning
five-axis machine tool
volumetric errors
R-test
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
On-the-fly virtual end-point constraints consists in moving all five axes of the machine tool while nominally maintaining the coincidence of a sensing head centre point with a master ball centre attached to the workpiece table. The sensing head detects the deviations from the nominal coincidence as a 3D volumetric error vector. More than one ball can be so measured, and a fixed length ball bar is also measured for detecting isotropic scaling effects. Initial processing of data using the SAMBA (scale and master ball artefact) method eliminates setup errors and provides estimates of inter- and intra-axis errors as well as volumetric error vectors. Two ML models are trained and compared, Neural Network (NN) and eXtreme Gradient Boosting (XGBoost), to find the most suitable model and the required amount of training data to predict volumetric errors of a five-axis machine tool with wCBXfZY(S)t topology based on axis commands. The results show that NN marginally outperforms XGBoost and a kinematic model with ratios of prediction error over volumetric error norms of 0.12, 0.13 and 0.14, respectively.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies