Tytuł pozycji:
Structural logic and abstract elementary classes with intersections
We give a syntactic characterization of abstract elementary classes (AECs) closed under intersections using a new logic with a quantifier for isomorphism types that we call structural logic: we prove that AECs with intersections correspond to classes of models of a universal theory in structural logic. This generalizes Tarski’s syntactic characterization of universal classes. As a corollary, we prove that any AEC closed under intersections with countable Löwenheim-Skolem-Tarski number is axiomatizable in L∞,ω(Q), where Q is the quantifier “there exist uncountably many”.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).