Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Optimizing infectious disease diagnostics through AI-driven hybrid decision making structures based on image analysis

Tytuł:
Optimizing infectious disease diagnostics through AI-driven hybrid decision making structures based on image analysis
Autorzy:
Ahsan, Muhammad
Damaševičius, Robertas
Shahzad, Sarmad
Data publikacji:
2024
Słowa kluczowe:
medical imaging
fuzzy logic
disease diagnostics
decision support
health informatics
obrazowanie medyczne
logika rozmyta
diagnostyka chorób
wsparcie decyzji
informatyka medyczna
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Infectious diseases significantly impact global mortality rates, with their complex symptoms complicating the assessment and determination of infection severity. Various countries grapple with different forms of these diseases. This research utilizes three AI-based decision-making techniques to refine diagnostic processes through the analysis of medical imagery. The goal is achieved by developing a mathematical model that identifies potential infectious diseases from medical images, adopting a multi-criteria decision-making approach. The avant-garde, AI-centric methodologies are introduced, harnessing an innovative amalgamation of hypersoft sets in a fuzzy context. Decision-making might include recommendations for isolation, quarantine in domestic or specialized environments, or hospital admission for treatment. Visual representations are used to enhance comprehension and underscore the importance and efficacy of the proposed method. The foundational theory and outcomes associated with this innovative approach indicate its potential for broad application in areas like machine learning, deep learning, and pattern recognition.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies