Tytuł pozycji:
On symmetric spaces containing isomorphic copies of Orlicz sequence spaces
Let an Orlicz function N be (1+ε)-convex and (2−ε)-concave at zero for some ε>0. Then the function 1/N−1(t), t∈(0,1], belongs to a separable symmetric space X with the Fatou property, which is an interpolation space with respect to the couple (L1,L2), whenever X contains a strongly embedded subspace isomorphic to the Orlicz sequence space lN. On the other hand, we find necessary and sufficient conditions on such an Orlicz function N under which a sequence of mean zero independent functions equimeasurable with the function 1/N−1(t), 0-1(t), a strongly embedded subspace isomorphic to the Orlicz sequence lN.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.