Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Dynamic grouping maintenance optimization by considering the probabilistic remaining useful life prediction of multiple equipment

Tytuł:
Dynamic grouping maintenance optimization by considering the probabilistic remaining useful life prediction of multiple equipment
Autorzy:
Cao, Xiangang
Shi, Xinyu
Zhao, Jiangbin
Duan, Yong
Yang, Xin
Data publikacji:
2024
Słowa kluczowe:
long short term memory
probabilistic remaining useful life prediction
Variational Auto-Encoder
Dynamic grouping maintenance
gazelle optimization algorithm
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
For multi-equipment maintenance of modern production equipment, the economic correlation and degradation uncertainty may lead to insufficient or excessive maintenance, increasing maintenance costs. This paper proposes a dynamic grouping maintenance method based on probabilistic remaining useful life (RUL) prediction for multiple equipment. Long short term memory (LSTM) is developed to predict the equipment probability RUL by the Variational Auto-Encoder (VAE) resampling. Then, the dynamic grouping maintenance model is constructed to minimize the maintenance cost rate under the known probabilistic RUL information. The gazelle optimization algorithm (GOA) is used to determine the optimal maintenance time for each equipment. To better verify the effectiveness of the proposed method, a numerical case with six wind turbines is introduced to analyse the performance of GOA. Moreover, the advantages of dynamic grouping maintenance is verified by comparing with independent maintenance, whose maintenance cost rate is reduced by 10.01%.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies