Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Online Learning Framework for Radio Link Failure Prediction in FANETs

Tytuł:
Online Learning Framework for Radio Link Failure Prediction in FANETs
Autorzy:
Danilchenko, Kiril
Lazmi, Nir
Segal, Michael
Data publikacji:
2023
Słowa kluczowe:
online learning
RLF prediction
UAV
nauka online
przewidywanie RLF
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this paper, we consider the problem of prediction of Radio Link Failures (RLF) in flying ad hoc networks (FANETs). Many environmental factors that influence the quality of radio wave propagation are dynamic, and thus, drones must continually learn and update their radio link quality prediction model while they operate online. Online machine learning algorithms can be used to build adaptive RLF predictors without requiring a pre-deployment effort. To predict the RLF, we use an online machine learning algorithm and information gathering by message-passing from the neighbors. We propose an algorithm called ML-Net (Machine Learning and Network algorithm) to predict RLF. To the best of our knowledge, the combination of online machine learning algorithms together with the message-passing algorithm has not been used before. The proposed methodology outperforms the state-of-the-art online machine learning algorithms.
1. Main Track Invited Contributions
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies