Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Can data processing algorithms ensure sufficient accuracy to estimate human body pose via wearable systems with use of IMU sensors? – an experimental evaluation

Tytuł:
Can data processing algorithms ensure sufficient accuracy to estimate human body pose via wearable systems with use of IMU sensors? – an experimental evaluation
Autorzy:
Szczerba, Aleksandra
Prochor, Piotr
Piszczatowski, Szczepan
Data publikacji:
2024
Słowa kluczowe:
pose estimation
wearable electronics
motion sensors
inertial measurement unit
human motion tracking
estymacja pozycji
elektronika noszona
czujnik ruchu
inercyjna jednostka pomiarowa
pomiar ruchu człowieka
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Background: The aim of the study was to answer two questions: 1 – Can data processing algorithms ensure sufficient accuracy for estimating human body pose via wearable systems? 2 – How to process the IMU sensor data to obtain the most accurate information on the human body pose? To answer these questions, the authors evaluated proposed algorithms in terms of accuracy and reliability. Methodology: data acquisition was performed with tested IMU sensors system mounted onto a Biodex System device. Research included pendulum movement with seven angular velocities (10-120°/s) in five angular movement ranges (30-120°). Algorithms used data from accelerometers and gyroscopes and considered complementary and/or Kalman filters with adjusted parameters. Moreover, angular velocity registration quality was also taken into consideration. Results: differences between means for angular velocity were 0.55÷1.05°/s and 1.76÷3.11%. In the case of angular position relative error of means was 4.77÷10.84%, relative error of extreme values was 2.15÷4.81% and Spearman’s correlation coefficient was 0.74÷0.89. Conclusions: Algorithm calculating angles based on acceleration-derived quaternions and with implementation of Kalman filter was the most accurate for data processing and can be adapted for future work with IMU sensors systems, especially in wearable devices that are designated to support human in daily activity.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies