Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Machinability investigation during turning of polyoxymethylene POM-C and optimization of cutting parameters using Pareto analysis, linear regression and genetic algorithm

Tytuł:
Machinability investigation during turning of polyoxymethylene POM-C and optimization of cutting parameters using Pareto analysis, linear regression and genetic algorithm
Autorzy:
Hakmi, Tallal
Hamdi, Amine
Touggui, Youssef
Laouissi, Aissa
Belhadi, Salim
Yallese, Mohamed A.
Data publikacji:
2024
Słowa kluczowe:
turning
POM-C
Pareto chart
multiple regression
genetic algorithm
obrót
wykres Pareto
regresja wielokrotna
algorytm genetyczny
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This paper presents a study on the dry turning of polyoxymethylene copolymer POM-C. The effect of five factors (cutting speed, feed rate, depth of cut, nose radius, and main cutting edge angle) on machinability is evaluated using four output parameters: surface roughness, tangential force, cutting power, and material removal rate. To do so, the study relies on three approaches: (i) Pareto statistical analysis, (ii) multiple linear regression modeling, and (iii) optimization using the genetic algorithm. To conduct the investigation, mathematical models are developed using response surface methodology based on the Taguchi 𝐿16 orthogonal array. The results indicate that feed rate, nose radius, and cutting edge angle significantly influence surface quality, while depth of cut, feed, and speed have a notable impact on other machinability parameters. The developed mathematical models have determination coefficients greater than or very close to 95%, making them very useful for the industry as they allow predicting response values based on the chosen cutting parameters. Finally, the optimization using the genetic algorithm proves to be promising and effective in determining the optimal cutting parameters to maximize productivity while improving surface quality.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies