Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Impact of Clustering Parameters on the Efficiency of the Knowledge Mining Process in Rule-based Knowledge Bases

Tytuł:
Impact of Clustering Parameters on the Efficiency of the Knowledge Mining Process in Rule-based Knowledge Bases
Autorzy:
Nowak-Brzezińska, A.
Rybotycki, T.
Data publikacji:
2016
Słowa kluczowe:
rule-based knowledge bases
clustering
similarity
visualization
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
In this work the subject of the application of clustering as a knowledge extraction method from real-world data is discussed. The authors analyze an influence of different clustering parameters on the quality of the created structure of rules clusters and the efficiency of the knowledge mining process for rules / rules clusters. The goal of the experiments was to measure the impact of clustering parameters on the efficiency of the knowledge mining process in rulebased knowledge bases denoted by the size of the created clusters or the size of the representatives. Some parameters guarantee to produce shorter/longer representatives of the created rules clusters as well as smaller/greater clusters sizes.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies