Tytuł pozycji:
Combinatorial Algorithms for Binary Operations on LR-tableaux with Entries Equal to 1 with Applications to Nilpotent Linear Operators
In the paper we investigate an algorithmic associative binary operation * on the set ℒℛ1 of Littlewood-Richardson tableaux with entries equal to one. We extend * to an algorithmic nonassociative binary operation on the set ℒℛ1 × ℕ and show that it is equivalent to the operation of taking the generic extensions of objects in the category of homomorphisms from semisimple nilpotent linear operators to nilpotent linear operators. Thus we get a combinatorial algorithm computing generic extensions in this category.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).