Tytuł pozycji:
Adaptive deep learning with optimization hybrid convolutional neural network and recurrent neural network for prediction lemon fruit ripeness
emon is a valuable fruit in the citrus family; optimal usage requires careful selection. The study categorized lemon suitability prediction int 4 classes based on image data. A hybrid neural network, combining Convolutional and Recurrent Neural Networks, was optimized with the Particle Swarm Optimization algorithm. Experimental results were compared to using Convolutional Neural Network alone. The prediction yielded 89.83% training accuracy and 66.06% testing accuracy. However, combining the results increased training accuracy to 91.58% and testing accuracy to 86.76%.
Cytryna to owoc należący do bardzo pożytecznej rodziny cytrusów, ale aby można było z niej korzystać w celu maksymalizacji korzyści płynących z cytryny, konieczne jest wybranie zachowania przydatności do spożycia. Dlatego w tym badaniu przewidywanie przydatności cytryny jest podzielone na 4 klasy przy użyciu obrazów jako danych do badań. Wyniki predykcji w badaniach z wykorzystaniem połączonej sieci neuronowej pomiędzy Convulotinal Nerual Network i Recurrent Nerual Network z optymalizacją parametrów algorytmem Particle Swarm Optimization, wyniki eksperymentalne porównano z wykorzystaniem wyłącznie Convulotinal Nerual Network. Dla predykcji wynik treningu to 89,83%, a wynik testu to 66,06%, natomiast wynik kombinacji wyników treningu to 91,58% i wynik testu to 86,76%.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki i promocja sportu (2025).