Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Exploring the impact of thiol collectors system on copper sulfide flotation through machine learning-driven modeling

Tytuł:
Exploring the impact of thiol collectors system on copper sulfide flotation through machine learning-driven modeling
Autorzy:
Guner, Mustafa K.
Akyildiz, Ozge
Basarir, Hakan
Kowalczuk, Pshem
Data publikacji:
2024
Słowa kluczowe:
machine learning
thiol collector
copper flotation
random forest
dosage optimization
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
Collector selection is a critical step in flotation, as it has a direct impact on product quality, flotation recovery, and selectivity. Collectors can consist of different components, and their effectiveness can vary depending on the type of ore being processed. The general practice in both literature and in industry is to use a mixture of collectors rather than a single collector. However, the use of a collector mixture introduces several complex issues. It is challenging to determine the specific effects of each collector on different minerals, as well as to understand the synergistic effects of mixed collectors in flotation. This study presents a novel investigation focusing on the impact of blends of NAX, AEROPHINE® 3422, and AERO® MX 5149, in varying dosages and combinations, on the flotation performance of Kupferschiefer copper ore. Kinetics flotation tests were conducted using a mechanical flotation cell with various combinations and dosages of listed collectors. For this investigation, different predictive models such as machine-learning (ML) and conventional regression analyses were developed. For model construction, a database including the results of comprehensive experimental results was constructed. The best performing model was selected considering statistical performance indicators and their performance on unseen data. A sensitivity analysis was conducted on the model to justify contributions of collectors on the copper recovery and grade. The results showed that the ML-based models provide compatible results with the expert opinions and have higher statistical performance than conventional modelling tools. According to the experimental results and models’ findings, it has shown that AEROPHINE® 3422 (a blend of isopropyl ethyl thionocarbamate and dithiophosphinate) was the most influential collector for the copper recovery. In addition, two ternary graphs were generated from the modeled data to formulate mixtures for different grades and recovery priorities.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies