Tytuł pozycji:
A hybrid statistical approach for texture images classification based on scale invariant features and mixture gamma distribution
Image classification refers to an important process in computer vision. The purpose of this paper is to propose a novel approach named GGD-GMM and based on statistical modeling in wavelet domain to describe textured images and rely on number of principles which give its internal coherence and originality. Firstly, we propose a robust algorithm based on the combination of the wavelet transform and Scale Invariant Feature Transform. Secondly, we implement the aforementioned algorithm and fit the result using the finite mixture gamma distribution (GMM). The results, obtained for two benchmark datasets, show that the proposed algorithm has a good relevance as it provides higher classification accuracy compared to some other well known models see (Kohavi, 1995). Moreover, it shows other advantages relied to Noise-resistant and rotation invariant.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).