Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Hydrological Forecasts Modeling Using Artificial Intelligence and Conceptual Models of KébirRhumel Watershed, Algeria

Tytuł:
Hydrological Forecasts Modeling Using Artificial Intelligence and Conceptual Models of KébirRhumel Watershed, Algeria
Autorzy:
Ramzi, Khaldi
Nadir, Marouf
Tewfik, Bouziane Mohamed
Hakim, Djafer Khodja
Data publikacji:
2024
Słowa kluczowe:
rainfall-runoff
prevision
Kalman filter
artificial neuron networks
nonlinear autoregressive exogenous model
long short term memory
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This study models the rainfall-runoff relationship in the Kebir-Rhumel River watershed in the Constantine Highlands, Algeria, using data from three concomitant rainfall and hydrometric stations. Statistical tests confirmed the absence of breaks in the series. We applied four conceptual models (GR4J, IHAC6, MORDOR, TOPMO8) and neural network models (RNN, NARX, LSTM) over three- and ten-year periods. Among the conceptual models, GR4J provided the best fit, highlighting the non-stationary nature of the relationship. The PMC neural network model performed well over three years but was less effective over ten years due to low flow influence. Notably, the NARX-RNN and RNN-LSTM models showed excellent predictive accuracy, with NARX-RNN perfectlycapturing flow dynamics and RNN-LSTM achieving minimal RMSE and high correlation coefficients. This study lies the comparative analysis of conceptual and neural network models, specifically the NARX-RNN and RNN-LSTM models, which have not been extensively applied in this context. This research fills the gap in understanding the effectiveness of neural network models in modelling non-stationary rainfall-runoff relationships in the region.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies