Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Material identification during turning by neural network

Tytuł:
Material identification during turning by neural network
Autorzy:
Denkena, Berend
Bergmann, Benjamin
Handrup, Miriam
Witt, Matthias
Data publikacji:
2020
Słowa kluczowe:
machine learning
turning
monitoring
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
A design concept for high-performance components involves the combination of different materials in hybrid workpieces. Different material properties and chemical compositions influence the machining quality of hybrid workpieces. To achieve a constant workpiece and process quality, it is necessary to adjust the process parameters to the individual material. Thus, it is mandatory to classify the material during machining for the relevant range of process parameters. This paper examines teaching strategies for neural networks to determine the machined material in process by a small amount of cross points. For this purpose, different training sets are compared. Process parameters with different cutting speeds, feeds and with constant and varying depth of cut are examined. In addition, the signal sources necessary for robust material classification are compared and investigated. The investigation is performed for the cylindrical turning of friction welded EN AW-6082/20MnCr5 shafts. The study shows that an F1 score of 0.99 is achieved at a constant cutting depth, provided that only the corner points of the process window and the machine control signals are used for training. With an additional variation of the cutting depth, the classification rate is significantly improved by the use of external sensors such as the acceleration sensor.
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies