Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modeling of Dispersed Red 17 Dye Removal from an Aqueous Solution Using Artificial Neural Network

Tytuł:
Modeling of Dispersed Red 17 Dye Removal from an Aqueous Solution Using Artificial Neural Network
Autorzy:
Ibrahim, Abdullah I.
Asmel, Nabel K.
Alabdraba, Waleed M. S.
Al-Nima, Raid R. O.
Data publikacji:
2024
Słowa kluczowe:
modelling
wastewater
AOP
advanced oxidation process
dye removal
artificial neural network
GCNN
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
A significant amount of hazardous compounds has leaked into the environment due to the widespread usage of organic dyes, and it is essential that these dangerous contaminants be removed in a sustainable way. This study used varying amounts of H2O2 (0, 0.5, 1.5, 3, and 5) mM/L to extract the dye from the aqueous solution. Furthermore, concentrations of 0.4, 1, 1.7, and 2.3 mM/L of Fe+2 as FeSO4•7H2O were also utilized. Batch Advanced Oxidation Process (AOP) was carried out under various working conditions, including: contact time (5–60 min), mixing speed (100–300 rpm), and UV light intensity (0–40 W). Utilizing experimental data, the AOP efficiency of Dispersed Red 17 Dye was calculated. Genetic Cascade-forward Neural Network (GCNN) was employed as a machine-learning tool to forecast the oxidation efficiency and the amount of dye that would be removed from the aqueous solution, specifically Dispersed Red 17. When compared to experimental data, the best model had an R2 correlation value of 0.955. The findings of the importance analysis showed that the studied parameters affected the discoloration efficiency with order of: H2O2, UV, Fe+2, mixing speed, and contact time. The obtained results demonstrated the effectiveness of GCNN as a novel approach in forecasting the AOP efficiency of Dispersed Red 17 Dye.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies