Tytuł pozycji:
Koncepcja komputerowo wspomaganej metodyki przewidywania mikrostruktury stali odkształcanej w stanie półciekłym
W artykule przedstawiono wyniki badań eksperymentalnych zrealizowanych pod kątem opracowania koncepcji komputerowo wspomaganej metodyki przewidywania zmian mikrostrukturalnych w stalach odkształcanych w zakresach temperatur bliskich linii solidus, czy też przetapianych w zakresie współistnienia fazy ciekłej i stałej, a następnie chłodzonych do temperatury otoczenia. Przedstawione wyniki badań eksperymentalnych jak i numerycznych wskazują na występowanie w objętości próbki zróżnicowanych szybkości chłodzenia. Wynika to między innymi z faktu stosowania uchwytów miedzianych, które ściśle determinują możliwe do uzyskania szybkości chłodzenia w układzie symulatora Gleeble 3800. Drugim istotnym czynnikiem jest stosowany oporowy system nagrzewania próbek, który ze względu na swoją specyfikę generuje nierównomierne pole temperatury na przekroju wzdłużnym i poprzecznym próbki. Powyższe czynniki powodują tworzenie się bardzo niejednorodnej i zróżnicowanej pod względem składu fazowego mikrostruktury w objętości próbki. W ramach prac wykorzystano dedykowane oprogramowanie DEFFEM do oszacowania rozkładu temperatury oraz określenia lokalnych szybkości chłodzenia w objętości próbki. Połączenie badań symulacyjnych z proponowaną metodyką pozwoli na numeryczne przewidywanie mikrostruktury w analizowanym materiale.
The paper presents the results of experimental tests carried out for the development of concept of computer-aided methodology for predicting microstructural changes in steel deformed in temperature ranges close to solidus lines or treated within the range of coexistence of the liquid and solid phase, and then cooled to ambient temperature. The results of both experimental and numerical studies show the presence of varied cooling velocities in the sample volume. This is due, among other things, to the use of copper grips that strictly determine the possible cooling velocity in the Gleeble 3800 simulator system. The second important factor is the use of a resistance heating system for samples which, due to its specificity, generates uneven temperature fields on the longitudinal and transverse cross sections of the sample. The above factors cause the formation of a very heterogeneous and varied microstructure in the sample volume. DEFFEM dedicated software was used to estimate the temperature distribution and to determine the local cooling velocity in the sample volume. Combination of simulation studies with the proposed methodology will allow numerical prediction of the microstructure in the analyzed material.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).