Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

A Quarter Century of Baker-Map Exploration

Tytuł:
A Quarter Century of Baker-Map Exploration
Autorzy:
Hoover, William Graham
Hoover, Carol Griswold
Data publikacji:
2023
Słowa kluczowe:
random walk
fractal
Baker Map
information dimension
Kaplan-Yorke dimension
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
25 years ago the June 1998 Focus Issue of “Chaos” described the proceedings of a workshop meeting held in Budapest and called “Chaos and Irreversibility”, by the organizers, T. Tél, P. Gaspard, and G. Nicolis. These editors organized the meeting and the proceedings’ issue. They emphasized the importance of fractal structures and Lyapunov instability to modelling nonequilibrium steady states. Several papers concerning maps were presented. Ronald Fox considered the entropy of the incompressible Baker Map B(x, y), shown here in Fig. 1. He found that the limiting probability density after many applications of the map is ambiguous, depending upon the way the limit is approached. Harald Posch and Bill Hoover considered a time-reversible version of a compressible Baker Map, with the compressibility modelling thermostatting. Now, 25 years later, we have uncovered a similar ambiguity, with the information dimension of the probability density giving one value from pointwise averaging and a different one with areawise averaging. Goldstein, Lebowitz, and Sinai appear to consider similar ambiguities. Tasaki, Gilbert, and Dorfman note that the Baker Map probability density is singular everywhere, though integrable over the fractal y coordinate. Breymann, Tél, and Vollmer considered the concatenation of Baker Maps into MultiBaker Maps, as a step toward measuring spatial transport with dynamical systems. The present authors have worked on Baker Maps ever since the 1997 Budapest meeting described in “Chaos”. This paper provides a number of computational benchmark simulations of “Generalized Baker Maps” (where the compressibility of the Map is varied or “generalized”) as described by Kumicák in 2005.
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies