Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prognozowanie wytrzymałości na ściskanie betonu natryskowego przy zastosowaniu inteligentnych metod obliczeniowych: sztucznej sieci neuronowej i regresji wektorów wspierających

Tytuł:
Prognozowanie wytrzymałości na ściskanie betonu natryskowego przy zastosowaniu inteligentnych metod obliczeniowych: sztucznej sieci neuronowej i regresji wektorów wspierających
Autorzy:
Kalhori, Hamid
Bagherpour, Raheb
Data publikacji:
2019
Słowa kluczowe:
beton natryskowy
wytrzymałość na ściskanie
pył krzemionkowy
sieć neuronowa sztuczna
regresja wektorów wspierających
shotcrete
compressive strength
microsilica
neural network
support vector regression
Język:
polski
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Wytrzymałość na ściskanie jest jedną z najważniejszych właściwości betonu. Wynik badania 28-dniowej wytrzymałości na ściskanie betonu lub betonu natryskowego jest wskaźnikiem ich jakości, który bardzo zależy od składu mieszanki betonowej. Niektóre czynniki takie jak rodzaj cementu, stosunek woda/cement, suma drobnego i grubego kruszywa w mieszance, domieszki i in. wpływają na wytrzymałość betonu. Bardzo trudno jest prognozować wytrzymałość betonu z powodu dużej liczby takich parametrów. Obecnie, dysponując inteligentnymi metodami obliczeniowymi, modelowanie odgrywa szczególną rolę w naukach inżynierskich i prognozowaniu zachowania się materiału. Dlatego w artykule przedstawiono wyniki badań różnych mieszanek betonu natryskiwanego zawierającego pył krzemionkowy i zbiory ich wytrzymałości na ściskanie po 28 dniach. Modele ANN oraz SVR zastosowano do prognozowania wytrzymałości na ściskanie betonu natryskowego biorąc pod uwagę parametry mieszanek betonu natryskiwanego jako dane wejściowe. Współczynnik korelacji (R), średni bezwzględny błąd procentowy (MAPE) i pierwiastek błędu średniokwadratowego (RMSE) są statystykami użytymi jako miary efektywności proponowanych modeli prognostycznych. Porównanie wszystkich wyników obliczeń z wynikami doświadczeń wskazuje na zadawalającą dokładność wyników uzyskiwanych przy użyciu proponowanych inteligentnych metod obliczeniowych. Wyniki przeprowadzonych badań wskazują, że zarówno model ANN jak i model SVR są dogodnymi narzędziami do oszacowania wytrzymałości na ściskanie betonu natryskiwanego.
Compressive strength is one of the most important mechanical properties of concrete. 28-day compressive strength test is the acceptance measure of concrete or shotcrete, which is highly affected by the mix design. Some parameters like water/cement ratio, amount of fine and coarse aggregates in mix, admixtures and so on affect shotcrete strength. Due to the large number of such parameters, it is very difficult to predict the shotcrete strength. Today, owing to intelligent methods, modeling has a particular role in engineering sciences and predicting material behavior. Therefore, this paper examines different mix designs of shotcrete containing microsilica and records their 28-day compressive strength. Regarding shotcrete mix design parameters as inputs, ANN and SVR models were used to predict compressive strength of shotcretes. The correlation coefficient (R), mean absolute percentage error (MAPE) and the root mean square error (RMSE) statics are used for performance evaluation of proposed predictive models. All of the results showed that the accuracy of the proposed soft computing methods is quite satisfactory as compared to experimental results. The finding of this study indicated that the both ANN and SVM models are sufficient tools for estimating the compressive strength of shotcrete.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies