Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Electric vehicle motor fault diagnosis using improved wavelet packet decomposition and particle swarm optimization algorithm

Tytuł:
Electric vehicle motor fault diagnosis using improved wavelet packet decomposition and particle swarm optimization algorithm
Autorzy:
Zheng, Wenfang
Wang, Tieying
Data publikacji:
2024
Słowa kluczowe:
chaos theory
motor fault diagnosis
PSO
particle swarm optimization
simulated annealing algorithm
wavelet packet decomposition
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This study addresses the issue of diagnosing faults in electric vehicle motors and presents a method utilizing Improved Wavelet Packet Decomposition (IWPD) combined with particle swarm optimization (PSO). Initially, the analysis focuses on common demagnetization faults, inter turn short circuit faults, and eccentricity faults of permanent magnet synchronous motors. The proposed approach involves the application of IWPD for extracting signal feature vectors, incorporating the energy spectrum scale, and extracting the feature vectors of the signal using the energy spectrum scale. Subsequently, a binary particle swarm optimization algorithm is employed to formulate strategies for updating particle velocity and position. Further optimization of the binary particle swarm algorithm using chaos theory and the simulated annealing algorithm results in the development of a motor fault diagnosis model based on the enhanced particle swarm optimization algorithm. The results demonstrate that the chaotic simulated annealing algorithm achieves the highest accuracy and recall rates, at 0.96 and 0.92, respectively. The model exhibits the highest fault accuracy rates on both the test and training sets, exceeding 98.2%, with a minimal loss function of 0.0035. Following extraction of fault signal feature vectors, the optimal fitness reaches 97.4%. In summary, the model constructed in this study demonstrates effective application in detecting faults in electric vehicle motors, holding significant implications for the advancement of the electric vehicle industry.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies