Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Development of a neural statistical model for the prediction of relative humidity levels in the region of Rabat-Kenitra, North West Morocco

Tytuł:
Development of a neural statistical model for the prediction of relative humidity levels in the region of Rabat-Kenitra, North West Morocco
Autorzy:
El Azhari, Kaoutar
Abdallaoui, Badreddine
Dehbi, Ali
Abdalloui, Abdelaziz
Zineddine, Hamid
Data publikacji:
2022
Słowa kluczowe:
artificial neural network
ANN
learning algorithm
multi-layer perceptron
MLP
modelling
Rabat-Kenitra
relative humidity
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
This article accounts for the development of a powerful artificial neural network (ANN) model, designed for the prediction of relative humidity levels, using other meteorological parameters such as the maximum temperature, minimum temperature, precipitation, wind speed, and intensity of solar radiation in the Rabat-Kenitra region (a coastal area where relative humidity is a real concern). The model was applied to a database containing a daily history of five meteorological parameters collected by nine stations covering this region from 1979 to mid-2014. It has been demonstrated that the best performing three-layer (input, hidden, and output) ANN mathematical model for the prediction of relative humidity in this region is the multi-layer perceptron (MLP) model. This neural model using the Levenberg-Marquard algorithm, with an architecture of [5-11-1] and the transfer functions Tansig in the hidden layer and Purelin in the output layer, was able to estimate relative humidity values that were very close to those observed. This was affirmed by a low mean squared error (MSE) and a high correlation coefficient (R), compared to the statistical indicators relating to the other models developed as part of this study.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies