Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Large and moderate deviation principles for nonparametric recursive kernel distribution estimators defined by stochastic approximation method

Tytuł:
Large and moderate deviation principles for nonparametric recursive kernel distribution estimators defined by stochastic approximation method
Autorzy:
Slaoui, Yousri
Data publikacji:
2019
Słowa kluczowe:
distribution estimation
stochastic approximation algorithm large and moderate deviations principles
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In this paper we prove large and moderate deviations principles for the recursive kernel estimators of a distribution function defined by the stochastic approximation algorithm. We show that the estimator constructed using the stepsize which minimize the Mean Integrated Squared Error (MISE) of the class of the recursive estimators defined by Mokkadem et al. gives the same pointwise large deviations principle (LDP) and moderate deviations principle (MDP) as the Nadaraya kernel distribution estimator.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies