Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Decomposition of Relations and Concept Lattices

Tytuł:
Decomposition of Relations and Concept Lattices
Autorzy:
Berghammer, R.
Winter, M.
Data publikacji:
2013
Słowa kluczowe:
division allegory
power allegory
relation algebra
partial order
complete lattice
decomposition
concept lattice
cut completion
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
We introduce the decomposition of an arbitrary relation into a sequential composition of three relations, viz. of a mapping with a partial order and then the transpose of a mapping. After presenting some basic properties, we investigate the specific classes of junkfree, irreducible and minimal decompositions and show that for all relations a minimal decomposition exists. We also study decompositions with regard to DedekindMacNeille completions and concept lattices. These constructions are closely related to decompositions of relations. In our setting the fundamental theorem of concept lattices states that concept lattices are minimal-complete decompositions and all such decompositions are isomorphic. As a further main result we prove that the cutDedekindMacNeille completion of the order that belongs to the minimal decomposition of a relation is isomorphic to the concept lattice of that relation. Instead of considering binary relations on sets, we will work point-free within the general framework of allegories. This complement-free approach implies that the results of the paper can be applied to all models of these algebraic structures, including, for instance, lattice-valued fuzzy relations.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies