Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Decomposition and the principle of interaction prediction in hierarchical structure of learning algorithm of ANN

Tytuł:
Decomposition and the principle of interaction prediction in hierarchical structure of learning algorithm of ANN
Autorzy:
Płaczek, S.
Data publikacji:
2015
Słowa kluczowe:
artificial neural network
hierarchy
decomposition
coordination
coordination principle
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
For the most popular ANN structure with one hidden layer, decomposition is done into two sub-networks. These sub-networks form the first level of the hierarchical structure. On the second level, the coordinator is working with its own target function. In the hierarchical systems theory three coordination strategies are defined. For the ANN learning algorithm the most appropriate is the coordination by the principle of interaction prediction. Implementing an off-line algorithm in all sub-networks makes the process of weight coefficient modification more stable. In the article, the quality and quantity characteristics of a coordination algorithm and the result of the learning algorithm for all sub-networks are shown. Consequently, the primary ANN achieves the global minimum during the learning process.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies