Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Modified local ternary patterns technique for brain tumour segmentation and volume estimation from MRI multi-sequence scans with GPU CUDA machine

Tytuł:
Modified local ternary patterns technique for brain tumour segmentation and volume estimation from MRI multi-sequence scans with GPU CUDA machine
Autorzy:
Sriramakrishnan, Padmanaban
Kalaiselvi, Thiruvenkadam
Rajeswaran, Rangasami
Data publikacji:
2019
Słowa kluczowe:
tumour detection
tumour segmentation
support vector machine
fuzzy c means
local ternary patterns
graphics processing unit
wykrywanie guza
segmentacja guza
maszyna wektorów wsparcia
grupowanie rozmyte
programowalny procesor graficzny
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
The proposed work develops a rapid and automatic method for brain tumour detection and segmentation using multi-sequence magnetic resonance imaging (MRI) datasets available from BraTS. The proposed method consists of three phases: tumourous slice detection, tumour extraction and tumour substructures segmentation. In phase 1, feature blocks and SVM classifier are used to classify the MRI slices into normal or tumourous. Phase 2 contains fuzzy c means (FCM) algorithm to extract the tumour region from slices identified by phase 1. In addition, graphics processing unit (GPU) based FCM method has been implemented for reducing the processing time which is major overhead with FCM processing of MRI volumes. For phase 3, a novel probabilistic local ternary patterns (PLTP) technique is used to segment the tumour substructures based on the probability density value of histogram bins. Quantitative measures such as sensitivity, specificity, accuracy and dice values are used to analyses the performance of the proposed method and compare with state-of-art-methods. As post processing, the tumour volume estimation and 3D visualization were done for analyzing the nature and location of the tumour to the medical experts. Further, the availability of the GPU reduces the processing time up to 18 than serial CPU processing.
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies