Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prediction of Water Quality Parameters of Tigris River in Baghdad City by Using Artificial Intelligence Methods

Tytuł:
Prediction of Water Quality Parameters of Tigris River in Baghdad City by Using Artificial Intelligence Methods
Autorzy:
Jaafer, Noora Sadeq
Al-Mukhtar, Mustafa
Data publikacji:
2024
Słowa kluczowe:
artificial intelligence
biochemical oxygen demand
dissolved oxygen
machine learning models
water quality parameters
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
The purpose of this research is to assess the efficacy of five distinct artificial intelligence model techniques: AdaBoost, Gradient Boosting, Tree, Random Forest, and KNN, to estimate the water quality parameters of dissolved oxygen (DO) and biochemical oxygen demand (BOD). The performance of each model was assessed using two datasets: AlMuthanna Bridge and Al-Aammah Bridge on the Tigris River in Baghdad City. The data was randomly divided into two categories: 70% for training and 30% for testing. Principal component analysis (PCA) was used to identify the most effective input parameters for modeling DO and BOD. The four performance criteria – coefficient of determination (R2 ), root mean square error (RMSE), mean absolute error (MAE), and mean square error (MSE) – were applied in order to evaluate the models’ effectiveness. It was demonstrated that the AdaBoost and Gradient Boosting models were superior for predicting DO and BOD. For DO prediction, the coefficient of determination R2 of Gradient Boosting (AdaBoost) at Al-Muthanna Bridge and Al-Aammah Bridge were 0.994 (0.992) and 0.994 (0.991), respectively. For BOD prediction, the correlation coefficients R2 of Gradient Boosting (AdaBoost) were 0.992 (0.982) and 0.989 (0.990), respectively. This study has shown that sophisticated machine learning techniques, such as gradient boosting and AdaBoost, are suitable for predicting water quality indices. They could also be helpful for predicting and managing the water quality parameters of different water supply systems in the future in water-related communities where artificial intelligence technology is still being thoroughly investigated.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies