Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Recognizing the topologies of spaces of metrics with the topology of uniform convergence

Tytuł:
Recognizing the topologies of spaces of metrics with the topology of uniform convergence
Autorzy:
Koshino, Katsuhisa
Data publikacji:
2022
Słowa kluczowe:
pseudometric
admissible metric
topology of uniform convergence
sup-metric
Fréchet space
convex set
Hilbert space
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Given a metrizable space X of density κ, we study the topological structure of the space PM(X) of continuous bounded pseudometrics on X, which is endowed with the topology of uniform convergence. We prove that PM(X) is homeomorphic to [0,1)κ(κ−1)/2 if X is finite, to ℓ2(2<κ) if X is infinite and generalized compact, and to ℓ2(2κ) if X is not generalized compact. We also show that for an infinite σ-compact metrizable space X, the space M(X)⊂PM(X) of continuous bounded metrics on X and the space AM(X)⊂M(X) of bounded admissible metrics on X are homeomorphic to ℓ2 if X is compact, and to ℓ∞ if X is not compact.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies