Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Prediction of Standard Time of the Sewing Process using a Support Vector Machine with Particle Swarm Optimization

Tytuł:
Prediction of Standard Time of the Sewing Process using a Support Vector Machine with Particle Swarm Optimization
Autorzy:
Shao, Yibing
Ji, Xiaofen
Zheng, Menglin
Chen, Caiya
Data publikacji:
2022
Słowa kluczowe:
standard time
support vector machine
particle swarm optimization
grey correlation analysis
czas standardowy
maszyna wektorów nośnych
optymalizacja rojem cząstek
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
Standard time is a key indicator to measure the production efficiency of the sewing department, and it plays a vital role in the production forecast for the apparel industry. In this article, the grey correlation analysis was adopted to identify seven sources as the main influencing factors for determination of the standard time in the sewing process, which are sewing length, stitch density, bending stiffness, fabric weight, production quantity, drape coefficient, and length of service. A novel forecasting model based on support-vector machine (SVM) with particle swarm optimization (PSO) is then proposed to predict the standard time of the sewing process. On the ground of real data from a clothing company, the proposed forecasting model is verified by evaluating the performance with the squared correlation coefficient (R2) and mean square error (MSE). Using the PSO-SVM method, the R2 and MSE are found to be 0.917 and 0.0211, respectively. In conclusion, the high accuracy of the PSO-SVM method presented in this experiment states that the proposed model is a reliable forecasting tool for determination of standard time and can achieve good predicted results in the sewing process.
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies