Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Application of Basic Machine-Learning Classifiers for Automatic Anomaly Detection in Shewhart Control Charts

Tytuł:
Application of Basic Machine-Learning Classifiers for Automatic Anomaly Detection in Shewhart Control Charts
Autorzy:
Woźniak, Aleksander
Krawiec, Klaudia
Książek, Roger
Data publikacji:
2024
Słowa kluczowe:
Machine Learning
Artificial Intelligence
AI
Statistical Process Control
SPC
Quality Control
Classifiers
Quality Metrics
Python Programming
Car Wheel
Quality Issues
Język:
angielski
Dostawca treści:
BazTech
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie  Pełny tekst  Link otwiera się w nowym oknie
In today’s dynamic technological environment, innovation plays a crucial role – especially for manufacturing enterprises that constantly strive to improve the quality of their products. This article examines the quality-management issue in a company producing car rims. It was identified that real-time quality control can sometimes be unreliable due to controller fatigue, leading to erroneous data interpretation or delayed responses to deviations in the production process. The study aimed to investigate the possibility of eliminating or significantly reducing these errors by employing a tool that is based on artificial intelligence. The article covers the preparation of training data, the training of classifiers, and the evaluation of their effectiveness in analyzing control charts in real time. The adopted hypothesis assumes that machine-learning classifiers can be effective methods of support for quality controllers. The research began with collecting measurement data from the machine and dividing it into training and test sets. The obtained results were evaluated using standard quality measures for machine-learning models. The results showed that the use of artificial intelligence can bring significant benefits in improving quality supervision in the production process of car rims.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies