Tytuł pozycji:
Analysis of asymptotic time complexity of an assumption-free alternative to the log-rank test
Comparison of two time-event survival curves representing two groups of individuals' evolution in time is relatively usual in applied biostatistics. Although the log-rank test is the suggested tool how to face the above-mentioned problem, there is a rich statistical toolbox used to overcome some of the properties of the log-rank test. However, all of these methods are limited by relatively rigorous statistical assumptions. In this study, we introduce a new robust method for comparing two time-event survival curves. We briefly discuss selected issues of the robustness of the log-rank test and analyse a bit more some of the properties and mostly asymptotic time complexity of the proposed method. The new method models individual time-event survival curves in a discrete combinatorial way as orthogonal monotonic paths, which enables direct estimation of the p-value as it was originally defined. We also gently investigate how the surface of an area, bounded by two survival curves plotted onto a plane chart, is related to the test’s p-value. Finally, using simulated time-event data, we check the robustness of the introduced method in comparison with the log-rank test. Based on the theoretical analysis and simulations, the introduced method seems to be a promising and valid alternative to the log-rank test, particularly in case on how to compare two time-event curves regardless of any statistical assumptions.
1. This research was supported by the grant no. F/45/2020 provided by Internal grant agency of University of Economics, Prague.
2. Track 2: Computer Science & Systems
3. Technical Session: 13th Workshop on Computer Aspects of Numerical Algorithms
4. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).