Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Melanoma recognition using an ensemble of deep CNN structures

The paper proposes a deep-learning approach to the recognition of melanoma images. It relies on the application of many different architectures of CNN combined in the form of an ensemble. The units of the highest efficiency are selected as the potential members of the ensemble. Different methods of arrangement of the ensemble members are studied and the limited number of the best units are included in the final form of an ensemble. The results of numerical experiments performed on the ISIC2017 database have shown the very high efficiency of the proposed ensemble system. The best accuracy in recognition of melanoma from nonmelanoma cases obtained by the ensemble was 96.54% at AUC = 0.9909, sensitivity 94.71%, and specificity 97.67%. These values are superior to the results presented for this ISIC2017 database.
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies