Tytuł pozycji:
Input physical properties in mathematical model of steel quenching
Purpose: Developing of new methods for input data of mathematical model is established. Design/methodology/approach: Temperature dependency of both, heat transfer for quenchant with Grossmann severity of quenching H=0.35, which are adequate for oil and heat conductivity coefficients has been calibrated on the base of Crafts-Lamont diagrams. Findings: Evaluation of physical properties such as specific heat capacity, c, heat conductivity coefficient, λ, density, ρ, heat transfer coefficient, α involved in mathematical model of transient temperature field was done by the inversion method, or by calibrations. Research limitations/implications: In the future this investigation should be broaden on investigation of more quechants. Practical implications: By proper input data of mathematical model of steel quenching, correct computer simulation can be performed. Originality/value: New inverse method of input data such as specific heat capacity, c, heat conductivity coefficient, λ, density, ρ, heat transfer coefficient, α, which is based just on achieved distributions of mechanical properties in Crafts-Lamont diagrams.