Informacja

Drogi użytkowniku, aplikacja do prawidłowego działania wymaga obsługi JavaScript. Proszę włącz obsługę JavaScript w Twojej przeglądarce.

Tytuł pozycji:

Porównanie stabilności taksonomii spektralnej oraz zagregowanych algorytmów taksonomicznych

Tytuł:
Porównanie stabilności taksonomii spektralnej oraz zagregowanych algorytmów taksonomicznych
Comparison of Spectral Clustering and Cluster Ensembles Stability
Autorzy:
Dorota Rozmus
Tematy:
Algorytmy
Metody taksonomiczne
Taksonomia
Algorithms
Taxonomic methods
Taxonomy
Język:
polski
Dostawca treści:
CEJSH
Artykuł
  Przejdź do źródła  Link otwiera się w nowym oknie
High accuracy of the results is very important task in any grouping problem (clustering). It determines effectiveness of the decisions based on them. Therefore in the literature there are proposed methods and solutions that main aim is to give more accurate results than traditional clustering algorithms (e.g. k-means or hierarchical methods). Examples of such solutions can be cluster ensembles or spectral clustering algorithms. A desirable quality of any clustering algorithm is also stability of the method with respect to small perturbations of data (e.g. data subsampling, small variations in the feature values) or the parameters of the algorithm (e.g. random initialization). Empirical results shown that cluster ensembles are more stable than traditional clustering algorithms. Here, we carry out an experimental study to compare stability of spectral clustering and cluster ensembles.

Ta witryna wykorzystuje pliki cookies do przechowywania informacji na Twoim komputerze. Pliki cookies stosujemy w celu świadczenia usług na najwyższym poziomie, w tym w sposób dostosowany do indywidualnych potrzeb. Korzystanie z witryny bez zmiany ustawień dotyczących cookies oznacza, że będą one zamieszczane w Twoim komputerze. W każdym momencie możesz dokonać zmiany ustawień dotyczących cookies